MATHS :: Lecture 05 :: Differential Calculus(1)
                  
				
DIFFERENTIATION
			    
 In all practical situations we come  across a number of variables. The variable is one which takes different values, whereas a constant takes a fixed value.
				  Let x be the independent variable.  That means x can take any value. Let y be a variable depending on the value of  x. Then y is called the dependent variable. Then y is said to be a function of  x and it is denoted by y = f(x)
				  For example if x denotes the time and y  denotes the plant growth, then we know that the plant growth depends upon time.  In that case, the function y=f(x) represents the growth function. The rate of  change of y with respect to x is denoted by 
and called as the derivative of function y with respect to x.
S.No.  | 
                     Form of Functions  | 
                     y=f(x)  | 
                     
  | 
                   
1.  | 
                     Power Formula  | 
                     xn  | 
                     
  | 
                   
2.  | 
                     Constant  | 
                     C  | 
                     0  | 
                   
3.  | 
                     Constant with variable  | 
                     Cy  | 
                     
  | 
                   
4.  | 
                     Exponential  | 
                     ex  | 
                     ex  | 
                   
5.  | 
                     Constant power x  | 
                     ax  | 
                     ax log a  | 
                   
6.  | 
                     Logirthamic  | 
                     logx  | 
                     
  | 
                   
7.  | 
                     Differentiation of a sum  | 
                     y = u + v  | 
                     
  | 
                   
8.  | 
                     Differentiation of a difference  | 
                     y = u – v  | 
                     
  | 
                   
9.  | 
                     Product rule of differentiation  | 
                     y = uv,   | 
                     
  | 
                   
10.  | 
                     Quotient rule of differentiation  | 
                      y =   | 
                     
  | 
                   
Example
- Differentiate  each of the following function   




 
Solution 
                     ![]()
- Differentiate following function   




 
Solution
     Here is the derivative.
  ![]()
![]()
![]()
![]()
- Differentiate  following function   




 
Solution 
                     ![]()
![]()
![]()
![]()
			       diff. w.r.to  x
  ![]()
![]()
![]()
![]()
			       MPSetEqnAttrs('eq0008','',3,[[90,34,13,-1,-1],[118,46,17,-1,-1],[148,57,21,-1,-1],[],[],[],[372,141,53,-3,-3]]);   
			       ExampleBegin();  4.  Differentiate   the following functions. 
			       a)      ![]()
                                                                                                                       
  Solution
   MPSetEqnAttrs('eq0009','',3,[[84,18,5,-1,-1],[111,24,7,-1,-1],[139,31,8,-1,-1],[],[],[],[348,77,21,-3,-3]])    	MPEquation()                               ![]()
![]()
![]()
![]()
			       MPSetEqnAttrs('eq0011','',3,[[76,23,5,-1,-1],[101,32,7,-1,-1],[127,40,8,-1,-1],[],[],[],[315,98,22,-3,-3]])    	MPEquation() ![]()
![]()
![]()
![]()
			       diff   y   w.  r. to  x      	MPSetEqnAttrs('eq0012','',3,[[154,27,9,-1,-1],[205,38,13,-1,-1],[257,47,16,-1,-1],[],[],[],[641,114,39,-3,-3]])    	MPEquation() ![]()
![]()
![]()
![]()
			       MPSetEqnAttrs('eq0012','',3,[[154,27,9,-1,-1],[205,38,13,-1,-1],[257,47,16,-1,-1],[],[],[],[641,114,39,-3,-3]]);     	MPSetEqnAttrs('eq0013','',3,[[132,62,28,-1,-1],[175,83,37,-1,-1],[218,105,47,-1,-1],[],[],[],[547,258,117,-3,-3]]);    
			       ExampleBegin();  5. Differentiate  the following  functions.    	MPSetEqnAttrs('eq0014','',3,[[218,34,14,-1,-1],[289,45,19,-1,-1],[361,55,23,-1,-1],[],[],[],[905,141,58,-3,-3]])    	MPEquation()    	MPSetEqnAttrs('eq0009','',3,[[84,18,5,-1,-1],[111,24,7,-1,-1],[139,31,8,-1,-1],[],[],[],[348,77,21,-3,-3]]); ![]()
![]()
![]()
![]()
 MPSetEqnAttrs('eq0010','',3,[[130,17,6,-1,-1],[172,22,7,-1,-1],[216,27,8,-1,-1],[],[],[],[539,71,22,-3,-3]])    	MPEquation() ![]()
![]()
![]()
![]()
![]()
			       diff   f(x)  w r to x
  ![]()
                                                   ![]()
![]()
Derivatives of the six  trigonometric  functions 
                     
![]()
![]()
  
Example
			       1.  Differentiate  each of the following functions.
   ![]()
![]()
![]()
![]()
  Solution   We’ll just differentiate each term using  the  formulas from above.
  ![]()
![]()
![]()
![]()
			       2.  Differentiate each of the following functions ![]()
![]()
![]()
![]()
			       Here’s the derivative of  this function.
  ![]()
![]()
![]()
![]()
 Note that in the  simplification step we took advantage of the fact that
                     ![]()
![]()
![]()
![]()
![]()
			       to  simplify the second term a little.
			       3.  Differentiate  each of the following functions ![]()
![]()
![]()
![]()
    In this part we’ll  need to use the quotient rule.
  
![]()
![]()
![]()
| Download this lecture as PDF here |